Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
نویسندگان
چکیده
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid models for time series forecasting. Several researches in the literature have been shown that these models can outperform single models. In this paper, the predictive capabilities of three different models in which the autoregressive integrated moving average (ARIMA) as linear model is combined to the multilayer perceptron (MLP) as nonlinear model, are compared together for time series forecasting. These models are including the Zhang’s hybrid ANNs/ARIMA, artificial neural network (p,d,q), and generalized hybrid ANNs/ARIMA models. The empirical results with three well-known real data sets indicate that all of these methodologies can be effective ways to improve forecasting accuracy achieved by either of components used separately. However, the generalized hybrid ANNs/ARIMA model is more accurate and performs significantly better than other aforementioned models.
منابع مشابه
Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کاملA Three-phase Hybrid Times Series Modeling Framework for Improved Hospital Inventory Demand Forecast
Background and Objectives: Efficient cost management in hospitals’ pharmaceutical inventories have the potential to remarkably contribute to optimization of overall hospital expenditures. To this end, reliable forecasting models for accurate prediction of future pharmaceutical demands are instrumental. While the linear methods are frequently used for forecasting purposes chiefly due to their si...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملInvestigating Chaos in Tehran Stock Exchange Index
Modeling and analysis of future prices has been hot topic for economic analysts in recent years. Traditionally, the complex movements in the prices are usually taken as random or stochastic process. However, they may be produced by a deterministic nonlinear process. Accuracy and efficiency of economic models in the short period forecasting is strategic and crucial for business world. Nonlinear ...
متن کاملDay-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Method
Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, non-stationary, and time variant behavior of electricity price time series. Accordingly, in this paper a new strategy is proposed for electricity price forecast. The forecast strategy includes Wavelet Transform (WT...
متن کامل